Future Tracking Code Base 1

Now is the time to move past long-standing limitations.
Capabilities We Will Need / Long Term Goals:

(1) Tracking with Realistic Geometries

(2) Multiple Collision Vertexing & Evaluation

(3) Advanced Track Projections

(4) Primary Vertex Tracking

(5) Pileup Simulations

(6) Modularize and Maintain the Core Tracking Implementations

Current Tracking Code Base

PHG4SvixDigitizer cell => SvtxHit creation, ADC digitization of energy
PHG4SvixDeadArea random deletion of SvtxHits based on input dead area
PHG4SvixThresholds removal of low energy hits
v —
silicon only option silicon + tpc option .
PHG4SvixClusterizer PHG4TPCClusterizer | SvtxCluster creation, opt. energy thresholds
{ v
silicon only option silicon + tpc option : T
SvtxTrack creation, track finding
PHG4HoughTransform PHG4HoughTransformTPC & fitting, vertexing
Ve —
PHG4TrackGhostRejection overlap testing, keeps best chisq track
PHG4SvthrackProjection fills calorimeter matching fields on SvixTrack
y

PHG4SvixBeamSpotReco

updates

Geometry Effort y

(1) Tracking with Realistic Geometries
() Full Material Descriptions
- MAPS ladder design
- TPC field cage / end-caps
- Strip ladder design (consider UV capability)
(I) Handling for New Geometries
- Update switch for Cylinder / Ladder geometries to
handle new ladders
() Full Geo/Field Kalman Fits
- Use GenFit interface as Stand-Alone Track Refitter
(IV) Updated Ghost rejection with Merge & Refit Capability
- Handle overlapping layers
* Use GenFit interface to refit tracks after merging
(V) Replace Simplified Kalman in HoughTransform
- Use GenFit interface inside Tracker, retire simple
Kalman completely

Vertexing Effort)

(2) Multiple Collision Vertexing & Evaluation
() Generic Reconstruction Capability
- RAVE interface implementation as stand-alone
Track=>Vertex SubsysReco
(Il) Revisit Initial Vertexing Algorithm
- Modify the initial guessing to be parallel or iterative
searches
(Ill)Revise Truth Storage
» Distinguishing collision and decay vertex storage
(IV) Update Evaluation to determine success rate on
multiple vertexing
- low False Positive, low False Negative rates
(V) Replace vertexing code inside HoughTransform, retire
old vertexing code

Projection Effort y

(3) Advanced Track Projections
() Tool to run tracks through field & material
- GenFit interface expose propagater
(Il) Fill Outer State Vector Storage
» SvixTrack can store multiple projections, but
doesn’t yet
(Il Update Calorimeter Projection
* uses very simple helix projections from vertex, easily
confused by scattering
(IV) Remove projection code on Tracking

Primary Track Effort ¥

(4) Primary Vertex Tracking
() Fill the collision vertex covariance
- RAVE interface should do this when refitting the
vertex
(Il) Refit the tracks with the vertex & covariance
* GenFit interface can be used in a new SubsysReco
» reads SvitxTrackMap, outputs SvtxPrimaryTrackMap

Pileup Effort ’

(5) Pileup Simulations
() Add Time Dependence to gdmain / g4detectors
(I) Revise Generator workflow

from HEPMC file
PHG4ParticleGenerator HepMC InputManager
PHG4ParticleGeneratorDO Pythia6
PHG4ParticleGeneratorVectorMeson Pythia8
PHG4ParticleGun
HepMC Node
PHG4SimpleEventGenerator

PHG4InEvent Node = HepMC Node Reader

v

to GEANT4

Pileup Effort Ii y

(5) Pileup Simulations
() Add Time Dependence to gdmain / g4detectors
(I) Revise Generator workflow

PHGeneratorBase _l

Pythia6 Pythia8 uJL HepMC Node

HepMC InputManager | | PHG4ParticleGun l

PHG4ParticleGeneratorVectorMeson HepMC Node Reader

PHG4ParticleGeneratorDO l

PHG4InEvent Node

v

to GEANT4

PHG4SimpleEventGenerator

Pileup Effort Il Y

(5) Pileup Simulations
() Add Time Dependence to gdmain / g4detectors
(I) Revise Generator workflow

PHPileupGenerator
I
PHGeneratorBase |l =8
HepMC Node
Pythia6 Pythia8 1

HepMC InputManager | | PHG4ParticleGun

HepMC Node Reader
PHG4ParticleGeneratorVectorMeson l

PHG4ParticleGeneratorDO PHG4InEvent Node

PHG4SimpleEventGenerator *
to GEANT4

Pileup Effort IV

(5) Pileup Simulations

() Add Time Dependence to gdmain / g4detectors
(I) Revise Generator workflow

() Requires Multiple Vertexing (RAVE interface)

Modularizing HoughTransform

There are memory performance reasons to fit track
candidates right after discovery, so a plan like the follow
could have problems:

PHG4TrackFinding

PHG4FastTrackFitting

PHG4HoughTransform

PHG4FullKalmanTrackFitting

PHG4Vertexing

In storing *all* the candidates, then fitting them.

Modularizing HoughTransform

An Alternative Option is to have the finding provide
candidates to other objects:

TrackingBase TrackFittingBase

std::vector<SvitxTrack*> find_tracks(std::vector<SvtxClus§er*>) std::vector<SvtxTrack*> fit_candidate(std::vector<SvtxCluster*>)

HoughTransform

FastTrackFitting

SimpleCombinations

FullKalmanTrackFitting

Olympus

VertexingBase

std::vector<SvixVertex*> find_vertex(std::vector<SvixTrack*>)

L> RaveVertexing

TrackingBase asks as a “candidate gun” calling a set of user determined functions
on each candidate set using a user determined algorithm to produce the sets

